
JPEG Implementation Forensics Based on Eigen-Algorithms

Nicolò Bonettini, Luca Bondi, Paolo Bestagini, Stefano Tubaro
Dipartimento di Elettronica, Informazione e Bioingegneria

Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
nicolo.bonettini / luca.bondi / paolo.bestagini / stefano.tubaro@polimi.it

Abstract

Due to the widespread diffusion of JPEG compression
standard, image forensic researchers have developed a se-
ries of techniques to reverse engineer specific JPEG-based
information (e.g., the used quantization matrix, presence of
double JPEG compression, JPEG grid alignment, etc.). In
this paper, we focus on the detection of traces left on images
by the use of different JPEG implementations (e.g., charac-
teristic of proprietary software suites). Specifically, given
a JPEG image under analysis, we propose a compact de-
scriptor that enables to distinguish which JPEG implemen-
tation has been used. This is done considering the chal-
lenging scenario in which the same quantization matrix is
used. Results show that it is possible to distinguish between
two popular JPEG implementations, as well as to adapt the
proposed methodology to additional JPEG-based forensic
problems.

1. Introduction
Nowadays, forging a digital image in a believable man-

ner is at everyone’s hand. Anyone can use professional
applications (e.g, Adobe Photoshop, etc.), online tools
(e.g., Pixlr, etc.) or even smartphone apps (e.g., Google
Snapseed, FaceSwap, etc.) to visually modify a photograph.
Despite indicating a great technological advancement, this
possibility poses a new threat every time pictures are used
in a court of law, as evidence on newspapers to spread infor-
mation, or for opinion formation scenarios. For this reason,
multimedia forensics researchers have developed a set of
tools to assess image authenticity and integrity [25, 27].

The idea behind passive image forensic tools is that
non-invertible image editing operations leave peculiar foot-
prints. These traces can be reverse engineered to detect the
use of editing operations [24].

Among the many different traces that can be exploited
(e.g., left by resampling [14], morphological operations
[10], blurring [2], etc.), those left by JPEG compression
have been deeply studied in the literature [20]. As a matter

of fact, JPEG is among the most widespread image com-
pression standards. Therefore, being able to forensically
analyze JPEG images means being able to analyze the vast
majority of pictures available online.

Capturing JPEG traces enables to expose different kinds
of image forgeries. As an example, the authors of [11] show
how to detect whether an image is uncompressed or it has
been JPEG compressed at least once during its life cycle.
Methods developed in [28] enable to detect the used JPEG
quantization matrix in case of single or double JPEG com-
pressions. Several algorithms have been proposed to detect
double JPEG compression, either when JPEG compression
grids are aligned [5, 22, 29] or misaligned [6] between the
first and second compression. Other solutions are able to
specifically tell how many times (up to three or four) an im-
age has been JPEG compressed [17, 19]. Moreover, also
specific kinds of convolutional neural networks have been
tailored to the detection of JPEG traces [3]. Needless to
say, when any of these methods is used locally on image re-
gions, it becomes a powerful image tampering localization
tool for exposing image splicings and compositions [4, 7].

In this paper, we focus on capturing traces left by differ-
ent JPEG implementations in order to distinguish between
images that have been compressed with different software
suites, even if the very same quantization matrix has been
used. As a matter of fact, the authors of [1] have recently
shown that it is possible to detect whether an image has been
compressed with different JPEG implementations accord-
ing to the used quantization rule (i.e., flooring, ceiling or
rounding). Motivated by this finding, we explore the ratio-
nale behind eigen-algorithms [16] to propose a compact de-
scriptor that captures JPEG implementation traces. Specif-
ically, given a JPEG image under analysis, we re-encode
it using different controlled implementations of JPEG com-
pression algorithm. We then compare the image under anal-
ysis with the re-compressed versions to expose salient dif-
ferences. These differences are collected into a descriptor,
that can be fed to a simple supervised classifier to detect the
JPEG implementation used to originally encode the image
under analysis.

1



The rest of the paper is structured as it follows. In Sec-
tion 2, we discuss a series of forensic use cases that can
benefit from the use of the proposed descriptor and classi-
fication technique. In Section 3, we provide all the details
of the proposed method. In Section 4, we describe the per-
formed experiments and discuss the achieved results. Fi-
nally, Section 5 concludes the paper.

2. Motivations
In this section, we discuss a series of use cases in which

the ability of detecting traces specific of a JPEG implemen-
tation can be useful from a forensics viewpoint.

2.1. Detection of Editing Software

In most situations, tampering a digital image involves
decoding a compressed image in the pixel domain, editing it
with one or more software tools, and finally save the image
in a compressed format. When the selected compression
format is the widespread JPEG standard, different software
suites may leverage proprietary solutions to achieve better
JPEG compression in terms of bitrate and quality trade-off.

Being able to detect which software has been used (e.g.,
Photoshop, GIMP, etc.) to save an image in JPEG format
can be of paramount importance from two different rea-
sons: (i) if the image is recognized to come from an edit-
ing suite, then the image cannot be considered pristine with
high probability; (ii) if the specific used software can be de-
tected, the list of possible attackers can be narrowed down.

2.2. Detection of Device Manufacturer

As for different image editing suites, also different cam-
era manufacturers make use of different JPEG implementa-
tions [1]. Even though many robust state-of-the-art detec-
tors are already tailored to camera model attribution prob-
lem [15, 9, 8], capturing and analyzing JPEG traces could
be helpful to narrow down the camera model search. As
a matter of fact, it could be possible to first use traces left
by JPEG compression to attribute images to the manufac-
turer of the camera used to shot it, and then apply a tailored
camera model solution to detect the specific model as a re-
finement step.

2.3. Detection of JPEG Anti-Forensics

Forging an image leaving absolutely no traces is not
an easy task. Indeed, an expert attacker has to cope with
at least two different kinds of traces he might leave: (i)
traces left in the pixel domain by processing operations
(e.g., multiple compressions, resizing, noise addition, copy-
move, etc.) that can be captured by one or more of the
many passive image forensic tools proposed in the litera-
ture [25, 24, 27]; (ii) traces left in headers and metadata
(e.g., missing fields with respect to original images coming

from cameras, name of the used image processing suite, in-
coherent geo-tagging information, etc.) that can be easily
detected by simple header inspection.

One of the most trivial mistakes an attacker might fall
into is to edit a JPEG photograph coming from a specific
camera model, then save it using one of the default JPEG
quantization matrices provided by the used editing soft-
ware. As a matter of fact, different camera models make use
of different custom JPEG quantization matrix. The quanti-
zation matrix is stored into each JPEG file as it is needed at
the decoding step. If an analyst detects that the quantization
matrix stored in the JPEG header is not compatible with the
ones used by the camera manufacturer, then the forgery is
easily spotted.

To overcome this issue, an expert attacker is left with
two options: (i) save the edited photograph with any quan-
tization matrix from the considered manufacturer; (ii) save
the edited photograph using the very same quantization ma-
trix of the original picture. However, the first option may
leave traces typical of double JPEG compression [23, 6].
Therefore, the second option is the safest solution for the
attacker. However, as the attacker does not have access to
the manufacturer JPEG implementation, the original JPEG
photograph and the edited JPEG pictures will still show dif-
ferent JPEG-traces despite the use of the same quantization
matrix.

In this paper, we show that the proposed descriptor al-
lows to capture traces of this specific anti-forensic opera-
tion, hardly detectable otherwise. In other words, we are
able to detect whether an image has been compressed with
one (e.g., camera) or another (e.g., editing software) JPEG
implementation, regardless of the used quantization matrix.

3. Proposed Method
In this section we report how to extract the proposed

JPEG-based descriptor f from a JPEG image I, and how to
possibly use it for classification tasks based on JPEG image
history.

3.1. Descriptor Extraction

Let us consider an image in the pixel domain I. For the
sake of notation simplicity and without loss of generality, let
us consider I being a grayscale image. Let us denote as Ĩ the
JPEG encoded version of I in the discrete cosine transform
(DCT) domain. In a nutshell, Ĩ is obtained by: (i) split-
ting I into non-overlapping 8× 8 pixel blocks; (ii) applying
JPEG-defined DCT transform to each block; (iii) quantiz-
ing each DCT coefficient according to a given quantization
matrix and a quantization rule (e.g., rounding, ceiling, etc.);
(iv) tiling all quantized DCT blocks back together to obtain
a matrix Ĩ having the same size of I. Notice that, from an
implementational view-point, if an image is already avail-
able in compressed JPEG format, its DCT representation Ĩ



JPEGa JPEGa

Coeff.
MSE

Coeff.
MSE

Squared
Error

DCT DCT DCT

I Ia
1 Ia

2

Ĩa
2Ĩa

1Ĩ

fa

fa
1 fa

2

Figure 1: Feature extraction pipeline using a single JPEG imple-
mentation (i.e., JPEGa) as eigen-algorithm.

is already available in the bitstream, thus there is no need to
re-compute Ĩ through DCT transform and quantization.

As JPEG implementations may differ (e.g., due to dif-
ferent quantization rules [1], or even more trivially due to
the use of different quantization matrices), we can exploit
the eigen-algorithm [16] idea to capture JPEG-based traces.
This means, we can re-compress image I using different
JPEG implementations, and check the differences intro-
duced by each implementation with respect to the original
image. Deviations and perturbations introduced by different
implementations can characterize the implementation itself.
Indeed, also works aiming at detecting double compression
with the same quantization matrix leverage DCT residual
statistical changes after multiple JPEG compressions [13].
In the following, we report how to capture these deviations
by means of a compact feature vector using a single, and
then multiple eigen-algorithms.

3.1.1 Single Eigen-Algorithm

To extract a compact feature vector capturing traces left by
a single JPEG implementation, we proceed according to the
pipeline shown in Fig. 1. Let us consider we have access
to a specific JPEG implementation denoted as JPEGa. By
applying JPEGa compression to I once, we obtain the de-
coded image Ia

1, and the respective DCT representation Ĩa
1.

By applying JPEGa compression to I twice, we obtain the
decoded image Ia

2, and the respective DCT representation
Ĩa
2.

We first compare Ĩ and Ĩa
1 by computing the mean

squared error (MSE) for each of the 64 DCT coefficients,
thus obtaining the 64-element feature vector f a

1, whose i-th
element is defined as

f a
1(i) =

1

B

B∑
b=1

∣∣∣Ĩ(i, b)− Ĩa
1(i, b)

∣∣∣2 , i ∈ [1, 64], (1)

where i is the index of a DCT coefficient, B is the number of
8×8 blocks the image is split into during JPEG compression
and b is the index of an 8× 8 block.

Feature
JPEGa

Feature
JPEGb

Feature
JPEGc

Concat

I fa

fb

f c

f

Figure 2: Feature extraction pipeline using multiple JPEG imple-
mentations as eigen-algorithms.

Then, we compare Ĩa
1 and Ĩa

2 by computing the MSE for
each of the 64 DCT coefficients in the same way, thus ob-
taining the 64-element feature vector f a

2. Finally, we obtain
the final descriptor by computing the element-wise squared
error between f a

1 and f a
2, thus obtaining f a, whose i-th ele-

ment is defined as

f a(i) = |f a
1(i)− f a

2(i)|
2
, i ∈ [1, 64]. (2)

Also f a is a 64-element feature vector.

3.1.2 Multiple Eigen-Algorithms

When multiple JPEG implementations are available, we can
compute different feature vectors and concatenate them ac-
cording to the pipeline reported in Fig. 2. In this paper, we
consider three different JPEG implementations: (i) JPEGa,
which uses rounding quantization rule and gives rise to fea-
ture vector f a; (ii) JPEGb, which uses flooring quantization
rule and gives rise to feature vector f b; (iii) JPEGc, which
uses ceiling quantization rule and gives rise to feature vec-
tor f c. The three feature vectors obtained with the different
implementations are concatenated in a single vector as

f =
[
f a, f b, f c] . (3)

The overall feature vector f is composed by 64 × 3 = 192
elements, and can be used for JPEG-based classification
tasks.

3.2. Classification

In principle, as f is a feature vector containing informa-
tion about JPEG-based image deviations, it can be fed to
any kind of supervised or unsupervised learning algorithm.
As in this paper we are more interested in the amount of
JPEG-based information that the proposed feature is able to
capture, rather than in developing a powerful classifier, we
make use of a simple classification technique, i.e., a random
forest classifier.

For all proposed tasks, we train a random forest classifier
without further optimization using feature vectors extracted
from a set of training images. When a new image has to
be classified, we simply extract the feature vector f from



the image then feed f to the trained random forest classifier.
This predicts the likelihood of the image to belong to any
class. The class with highest likelihood is selected as candi-
date solution. Depending on the application, it is possible to
set a custom threshold and only consider results for images
with an estimated likelihood higher than the threshold.

4. Experiments and Results

In this section we report all the performed experiments
and results, separately considering each different use case.
A reference implementation of the presented features ex-
tractor is available online1. All the experiments are carried
out on a workstation equipped with Ubuntu 16.04, Python
3.6, PIL 5.2.0, and libjpeg 9.2.0. JPEG compression with
Adobe Photoshop CC 2017 is performed on macOS Sierra.
It is worth noting that the forensics analyst doesn’t need to
know which JPEG implementations are used to compress
the images.

As all the experiments involve the use of a supervised
classifier (i.e., a random forest), we always proceed in the
following way: (i) given a dataset, we randomly split its
samples into 50% training and 50% validation; (ii) the ran-
dom forest is trained using default parameters2 on the train-
ing set; (iii) results are reported on the test set. As no hyper-
parameters tuning is performed, there is no need for a vali-
dation set of data. This is done on purpose in order to eval-
uate the proposed feature discrimination capability with a
simple classifier, rather than our ability of fully optimizing
a machine-learning technique.

4.1. Photoshop vs. PIL (Single Compression)

The first experiment we performed is a two-class clas-
sification problem: to detect whether a single compressed
JPEG image has been saved using Adobe Photoshop CC
2017 (hereinafter Photoshop) or the Python Imaging Li-
brary (PIL), considering that the same quantization matrix
has been used.

To this purpose, we built a dataset starting from the 1 338
uncompressed color images at 512×384 pixel resolution of
the UCID dataset [26]. Notice that considering low resolu-
tion images makes the problem more challenging. Indeed,
less pixels lead to less reliable statistics, thus feature vec-
tors.

We first JPEG compressed each uncompressed image us-
ing Photoshop at different JPEG quality levels, thus obtain-
ing four distinct datasets: D1

PS,D3
PS,D5

PS andD7
PS consisting

of 1 338 single compressed images at quality 1, 3, 5 and 7,
respectively3. Then, we compressed each UCID uncom-
pressed image with PIL, forcing the use of the respective

1https://github.com/polimi-ispl/jpeg-eigen
2According to scikit-learn implementation [21].
3Photoshop JPEG quality ranges from 0 (very low) to 12 (very high).

(a) Original (b) Low quality (c) High quality

Figure 3: Example of different Photoshop quality factors.

Figure 4: Accuracy for the case D1
PS vs. D1

PIL while increasing the
amount of used DCT coefficients in zig-zag order.

JPEG quantization matrix used by Photoshop, thus obtain-
ing datasets D1

PIL, D3
PIL, D5

PIL and D7
PIL. With this setup, we

extracted the proposed feature vector from the luminance
component of every picture, and trained a different classi-
fier for each dataset pair (i.e., D1

PS vs. D1
PIL, D3

PS vs. D3
PIL,

etc.). Notice that, for these experiments, an image in D1
PS

and the relative image in D1
PIL are single JPEG compressed

with the very same quantization matrix. Their differences
are only due to the used software, i.e., JPEG implementa-
tion.

Fig. 3 shows an example of original UCID image, the
low quality Photoshop version from D1

PS, and the higher
quality Photoshop version from D7

PS. It is possible to no-
tice that images are not strongly visually degraded by JPEG
artifacts.

Fig. 4 shows the effect on accuracy of using a different
amount of DCT coefficients to build the proposed feature
vector, considering the scenario D1

PS vs. D1
PIL. It is possible

to notice that, by increasingly selecting a greater amount of
DCT coefficients read in zig-zag mode, accuracy increases.
This is expected, as the more the coefficients, the better the
captured JPEG deviations. This validates the idea of using
all 64 JPEG DCT coefficients.

Table 1a reports results in terms of true positive rate
(i.e., Photoshop images correctly detected), true negative
rate (PIL images correctly detected) and accuracy for each
dataset pair. It is possible to notice that, the lower the JPEG
quality, the better the results. Indeed, accuracy for JPEG
low quality images is higher than 86%, and it drops to 75%
when high quality images are considered. This behavior is
not surprising, as it is reasonable to assume that low quality



Table 1: Photoshop vs. PIL detection in case of single and double
compression. TPR and TNR are the fraction of correctly detected
Photoshop and PIL images, respectively.

(a) Single Compression

Task TPR TNR Accuracy
D1

PS vs. D1
PIL 0.89 0.82 0.86

D3
PS vs. D3

PIL 0.82 0.79 0.81
D5

PS vs. D5
PIL 0.80 0.74 0.77

D7
PS vs. D7

PIL 0.77 0.73 0.75

(b) Double Compression

Task TPR TNR Accuracy
D̈1

PS vs. D̈1
PIL 0.95 0.83 0.89

D̈3
PS vs. D̈3

PIL 0.83 0.70 0.77
D̈5

PS vs. D̈5
PIL 0.75 0.63 0.69

D̈7
PS vs. D̈7

PIL 0.72 0.57 0.65

Figure 5: ROC curves showing the different possible working
points for each dataset pair according to the used JPEG quality
in case of single compression.

factors lead to more pronounced artifacts.
Finally, Fig. 5 shows the receiver operating characteris-

tic (ROC) curve for each dataset pair obtained thresholding
the soft output of each random forest classifier. Indeed, for
a two-class problem, the output of the classifier can be in-
terpreted as the likelihood of an image to belong to a single
class. It is possible to notice that by properly selecting this
threshold, it is possible to enforce a specific working condi-
tion in terms of true and false positive rates.

4.2. Photoshop vs. PIL (Double Compression)

The second experiment we performed is a more chal-
lenging version of the first one: to detect whether an image
has been originally JPEG compressed using Photoshop or
PIL, given that afterward it is re-compressed with the same
quantization matrix using PIL.

For this experiment, we took all previously built datasets,

Figure 6: ROC curves showing the different possible working
points for each dataset pair according to the used JPEG quality
in case of double compression.

and re-compressed each image using PIL and the same
quantization matrix used for the first compression. We
therefore generated datasets D̈1

PS, D̈3
PS, D̈5

PS, D̈7
PS (i.e., first

compression with Photoshop and second with PIL), and
D̈1

PIL, D̈3
PIL, D̈5

PIL, D̈7
PIL (i.e., both compressions with PIL).

Notice that, each image in D̈1
PS has been double compressed

with the same quantization matrix, and the relative image
in D̈1

PIL underwent the same processing. The only differ-
ence is the software used for the first compression step (i.e.,
Photoshop or PIL). Also in this scenario, we analyzed each
dataset pair separately according to their quality factors.

Table 1b reports the true positive rate (i.e., Photoshop
images correctly detected), true negative rate (PIL images
correctly detected) and accuracy for each dataset pair. It is
possible to notice also this time that the accuracy increases
for low JPEG qualities. Indeed, accuracy ranges from 89%
for low quality images, to 65% for higher quality pictures.
However, given the challenging task, we can conclude that
the proposed feature vector is still a viable solution toward
capturing JPEG implementation traces.

Finally, Fig. 6 reports the ROC curves obtained thresh-
olding random forest outputs for each dataset pair. It is
possible to notice that, in case of double compression, low
JPEG quality factors lead to better results compared to sin-
gle JPEG compression scenario. Conversely, if two JPEG
compressions at high quality are applied, traces of the used
software are hindered.

4.3. Device Manufacturer

The third experiment we performed can be considered
a multi-class classification problem: to detect the manu-
facturer of the camera used to shot a JPEG image within
a closed set of possible known vendors.

To this purpose, we selected all images from Dresden
Image Dataset [12]. This dataset is composed by more than
16 000 images belonging to almost 30 camera models from



Figure 7: Camera manufacturer detection confusion matrix. En-
tries smaller than 1% are not reported.

14 different camera manufacturers.
Fig. 7 shows the confusion matrix reporting all misclas-

sification errors for the 14 considered camera brands. The
overall accuracy in this case is slightly higher than 79%.

Considering this specific experiment, we believe it is im-
portant to make an additional consideration. Many state-
of-the-art solutions already exist to solve camera attribu-
tion problems in all their shapes (e.g., detecting the cam-
era brand, model, instance, etc.) with high accuracy results.
However, these methods do not simply rely on JPEG in-
formation. Conversely they exploit many kinds of different
camera-related traces (e.g., sensor pattern noise, color filter
array interpolations, lens aberrations, etc.). Therefore, we
still find interesting to show how it is possible to solve cam-
era brand detection problem, just relying on JPEG traces,
even with reduced accuracy. Indeed, we believe that the
proposed feature could be used as additional input to help
other camera model detection algorithm in the literature.

4.4. JPEG Anti-Forensics

The last experiment we performed consists in solving
the following two-class problem related to the JPEG anti-
forensic scenario: to detect whether a JPEG image is a pris-
tine one coming directly from a camera, or if it has been
edited and re-compressed with the same JPEG quantization
matrix.

To this purpose, we utilized a new, state-of-the-
art dataset from NIST called Nimble Challenge 2017
(NC2017) for image manipulation detection [18]. This
dataset consists of 3 415 JPEG compressed images split into
two classes: 916 images are pristine, as generated by a cam-
era firmware, and 2 499 images are forged. The latter have
been JPEG re-compressed with the aforementioned anti-

Figure 8: ROC curve obtained on NC2017 dataset for the JPEG
antiforensic detection task.

forensic technique, thus a forged image file has the same
quantization matrix as the pristine image file that serves
as background. Notice that, as camera models JPEG im-
plementations are not available, two important differences
can be observed comparing images belonging to the two
classes: (i) forged images are at least double JPEG com-
pressed (if not multiple JPEG compressed); (ii) the JPEG
implementation used for the final anti-forensics JPEG com-
pression is most likely different than any JPEG implemen-
tation used for pristine images. Fig.8 shows the ROC curve
obtained by comparing the random forest output with dif-
ferent thresholds for the anti-forensic detection task. This
shows that it is possible to distinguish pristine images from
those edited and re-saved with the JPEG anti-forensic tech-
nique with a value of area under the curve of 0.82.

5. Conclusions
In this paper, we presented a novel descriptor based on

the eigen-algorithms idea to capture traces left by different
JPEG implementations. The rationale behind the proposed
method is that it is possible to analyze a JPEG image under
analysis by re-compressing it multiple times with a set of
available JPEG implementations. Deviations introduced by
eigen-algorithms enable to characterize unknown JPEG im-
plementations, thus allowing to detect the implementation
used to compress an image under analysis.

The proposed method has been tested considering dif-
ferent challenging use cases. These range from software
detection (i.e., Photoshop vs. PIL), to detection of a JPEG
anti-forensic technique. Results show that the proposed so-
lution achieves high accuracy on several different tasks, and
that it benefits from low quality JPEG compression factors.
Moreover, the proposed feature vector can be interestingly
used to cope with camera brand attribution as well.

Future work will be devoted to the local application of
the proposed technique in order to detect local editing oper-
ations such as splicings and copy-paste.



References
[1] S. Agarwal and H. Farid. Photo forensics from JPEG dim-

ples. In IEEE International Workshop on Information Foren-
sics and Security (WIFS), 2017. 1, 2, 3

[2] K. Bahrami, A. C. Kot, L. Li, and H. Li. Blurred image splic-
ing localization by exposing blur type inconsistency. IEEE
Transactions on Information Forensics and Security (TIFS),
10:999–1009, 2015. 1

[3] M. Barni, L. Bondi, N. Bonettini, P. Bestagini, A. Costanzo,
M. Maggini, B. Tondi, and S. Tubaro. Aligned and non-
aligned double JPEG detection using convolutional neural
networks. Journal of Visual Communication and Image Rep-
resentation (JVCI), 49:153–163, 2017. 1

[4] M. Barni, A. Costanzo, and L. Sabatini. Identification of cut
& paste tampering by means of double-JPEG detection and
image segmentation. In IEEE International Symposium on
Circuits and Systems (ISCAS), 2010. 1

[5] T. Bianchi and A. Piva. Detection of non-aligned double
JPEG compression with estimation of primary compression
parameters. In IEEE International Conference on Image Pro-
cessing (ICIP), 2011. 1

[6] T. Bianchi and A. Piva. Detection of nonaligned double
JPEG compression based on integer periodicity maps. IEEE
Transactions on Information Forensics and Security (TIFS),
7:842–848, 2012. 1, 2

[7] T. Bianchi and A. Piva. Image forgery localization via block-
grained analysis of jpeg artifacts. IEEE Transactions on
Information Forensics and Security (TIFS), 7:1003–1017,
2012. 1

[8] L. Bondi, L. Baroffio, D. Güera, P. Bestagini, E. J. Delp, and
S. Tubaro. First steps toward camera model identification
with convolutional neural networks. IEEE Signal Processing
Letters (SPL), 24:259–263, March 2017. 2

[9] C. Chen and M. C. Stamm. Camera model identification
framework using an ensemble of demosaicing features. IEEE
International Workshop on Information Forensics and Secu-
rity (WIFS), 2015. 2

[10] F. De Natale and G. Boato. Detecting morphological filtering
of binary images. IEEE Transactions on Information Foren-
sics and Security (TIFS), 12:1207–1217, 2017. 1

[11] Z. Fan and R. L. de Queiroz. Identification of bitmap com-
pression history: JPEG detection and quantizer estimation.
IEEE Transactions on Image Processing (TIP), 12:230–235,
2003. 1

[12] T. Gloe and R. Böhme. The Dresden image database for
benchmarking digital image forensics. Journal of Digital
Forensic Practice, 3:150–159, 2010. 5

[13] F. Huang, J. Huang, and Y. Q. Shi. Detecting double
JPEG compression with the same quantization matrix. IEEE
Transactions on Information Forensics and Security (TIFS),
5:848–856, 2010. 3

[14] M. Kirchner. Fast and reliable resampling detection by spec-
tral analysis of fixed linear predictor residue. In ACM work-
shop on Multimedia and security (MM&Sec), 2008. 1

[15] M. Kirchner and T. Gloe. Forensic camera model identi-
fication. In Handbook of Digital Forensics of Multimedia

Data and Devices, pages 329–374. John Wiley & Sons, Ltd,
Chichester, UK, 2015. 2

[16] S. Milani, P. Bestagini, M. Tagliasacchi, and S. Tubaro. De-
mosaicing strategy identification via eigenalgorithms. In
IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), 2014. 1, 3

[17] S. Milani, M. Tagliasacchi, and S. Tubaro. Discriminating
multiple JPEG compressions using first digit features. AP-
SIPA Transactions on Signal and Information Processing,
3:1–11, 2014. 1

[18] NIST. Nimble Challenge 2017 Dataset (NC2017)
for image manipulation detection. Available at:
https://www.nist.gov/itl/iad/mig/media-forensics-challenge.
6

[19] C. Pasquini, G. Boato, and F. Pérez-González. Multiple
JPEG compression detection by means of Benford-Fourier
coefficients. In IEEE International Workshop on Informa-
tion Forensics and Security (WIFS), 2014. 1

[20] C. Pasquini, G. Boato, and F. Pérez-González. Statistical
detection of JPEG traces in digital images in uncompressed
formats. IEEE Transactions on Information Forensics and
Security (TIFS), 12:2890–2905, 2017. 1

[21] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss,
V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Ma-
chine learning in Python. Journal of Machine Learning Re-
search, 12:2825–2830, 2011. 4

[22] T. Pevny and J. Fridrich. Detection of double-compression
in JPEG images for applications in steganography. IEEE
Transactions on Information Forensics and Security (TIFS),
3:247–258, 2008. 1

[23] T. Pevny and J. Fridrich. Detection of Double-Compression
in JPEG Images for Applications in Steganography. IEEE
Transactions on Information Forensics and Security (TIFS),
3:247–258, 2008. 2

[24] A. Piva. An overview on image forensics. ISRN Signal Pro-
cessing, 2013. 1, 2

[25] A. Rocha, W. Scheirer, T. Boult, and S. Goldenstein. Vision
of the unseen: Current trends and challenges in digital im-
age and video forensics. ACM Computing Surveys, 43:1–42,
2011. 1, 2

[26] G. Schaefer and M. Stich. UCID - an uncompressed colour
image database. In SPIE Storage and Retrieval Methods and
Applications for Multimedia, 2004. 4

[27] M. C. Stamm, Min Wu, and K. J. R. Liu. Information foren-
sics: An overview of the first decade. IEEE Access, 1:167–
200, 2013. 1, 2

[28] T. Thai, R. Cogranne, F. Retraint, and T. Doan. JPEG quan-
tization step estimation and its applications to digital image
forensics. IEEE Transactions on Information Forensics and
Security (TIFS), 12:123–133, 2017. 1

[29] Q. Wang and R. Zhang. Double JPEG compression forensics
based on a convolutional neural network. EURASIP Journal
on Information Security, 2016:1–23, 2016. 1


