
IMAGE ANONYMIZATION DETECTION WITH DEEP HANDCRAFTED FEATURES
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ABSTRACT

In recent years, the number of images shared online has continuously
grown. The forensics community has kept the pace by developing
techniques to both reliably extract information from these images,
but also to remove it. In particular, the latest developments in im-
age anonymization methods exposes an attack vector when used by
skilled ill-intentioned image producers that may want to elude pros-
ecution. We present an approach to detect whether or not an im-
age has undergone a laundering process, i.e., it has been tampered
with so that its unique characterizing features have been changed
to avoid detection. We focus on photo response non uniformity
(PRNU) noise unique to every imaging sensor, we consider that an
image has been “laundered” when we detect the absence of PRNU
from an image. We propose a per image preprocessing pipeline that
generates information-rich features later used as input of fine-tuned
convolutional neural networks (CNNs). We study the performance
of the proposed approach using various CNN architectures and blind
anonymization techniques, and show its effectiveness under several
training and testing scenarios. Our results also show that CNN mod-
els trained with the proposed feature are capable of generalizing
over unseen devices and are robust against non-geometric transfor-
mations.

Index Terms— Image forensics, PRNU, camera attribution,
deep learning

1. INTRODUCTION

In the last decade, the massive adoption of the smartphone and the
global popularization of social networking websites has led to un-
precedented rates of social digital media sharing. In 2010 alone,
Facebook reported storing more than 260 billion images, with users
uploading one billion new images each week [1]. In 2016, Instagram
had more than 400 million active monthly users who shared over 40
billion images, with an average of 3.5 billion daily “likes” for more
than 80 million images shared daily on the site [2].

The forensic community [3] has developed a series of multime-
dia source attribution techniques in the pixel domain that have en-
abled one to detect which device has been used to acquire an image
with precise results [4, 5]. These tools do not using any exchange-
able image file format (Exif) information which can easily be modi-
fied or removed.
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This set of tools have been successfully used to establish foren-
sic evidence in major international legal proceedings and have re-
cently passed the United States Judiciary Daubert standard [6]. The
Daubert standard is a rule of evidence regarding the admissibility
of expert witnesses’ testimony in United States Federal Courts and
has been thoroughly vetted by the FBI Crime Laboratory and the US
National Institute of Justice (NIJ) [7].

The image and video source attribution problem consists in de-
tecting which device has been used to acquire a specific image or
video, thus tracing back the digital media to its owner [8, 9]. The
most promising approaches exploit the photo response non unifor-
mity (PRNU) noise [5, 10]. This is a multiplicative noise pattern
characterizing each imaging sensor, which is inevitably injected into
every acquired image or video. By estimating a noise fingerprint
from an image, it is possible to compare it with the PRNUs of known
camera devices, thus determining which device “took the picture”.
PRNU-based approaches can also be used on scaled and cropped
images or videos [11].

Forensic techniques that focus on removing traces of PRNU
from images have been well studied in the literature. We can dis-
tinguish two major approaches: the first group requires knowledge
of the PRNU pattern to be deleted, whereas the other major group
does not require access to the real PRNU to remove it from a given
image.

Sensor fingerprint removal based on knowledge of the underly-
ing PRNU was first suggested by Lukáš et al. in [8]. This approach
assumes a known PRNU fingerprint estimate of a particular imaging
sensor is latent in any given image intensity acquired by the same
sensor. Hence, the removal of the PRNU fingerprint (the anonymi-
zation of the image source) can be achieved by subtraction of the
fingerprint estimate from the image intensity.

More recently, the approach presented by Bonettini et al. in [12]
explores the possibilities offered by CNNs in terms of camera device
anonymization based on the knowledge of the reference PRNU. An
image-wise anonymization step is part of a CNN-based noise extrac-
tor. An autoencoder fully-convolutional neural network is trained as
an anonymization function via back-propagation, exploiting the pos-
sibilities offered by a CNN-based denoising method introduced by
Zhang et al. [13].

Other image anonymization methods work by blindly modify-
ing pixel values and scrambling their positions in order to make
the underlying PRNU unrecognizable. Dirik et al. [14] propose to
anonymize images by applying seam-carving to change pixel loca-
tions and more recently Entrieri and Kirchner [15] compare patch-
based methods to shuffle small image blocks. Mandelli et al. [16]
investigate parallel and fast inpainting techniques as methods for im-
age anonymization.

As discussed in the Malicious AI report [17], one should always
reflect on the dual-use nature of their work, allowing misuse to in-
fluence research priorities and norms.
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Fig. 1: (a) RGB image anonymized using [15]. (b) Wavelet noise extracted from the image. (c) DFT2 of the signal. (d) Final feature after
Wiener filtering.

It is not far-fetched to imagine malevolent agents using the above
forensic tools to anonymize images showing sensitive or illegal con-
tent. As an example, an illegal content producer could anonymize its
images to avoid being linked to them in case that its image acquisi-
tion equipment were to be seized while in his possession. Hence, it
is of paramount importance to know when an image has undergone
any process to attempt to remove its underlying PRNU.

For this reason, in this paper we focus on the problem of im-
age anonymization detection. This is, given an image, understand
whether someone edited it in order to hide PRNU traces to avoid de-
vice identification. The method we propose is based on the use of a
CNN. However, rather then feeding the network with images in the
pixel domain, we show that applying the proposed pre-processing
technique greatly improves anonymization detection performance.
The proposed solution is able to generalize to different kinds of ano-
nymization methods never seen during training, thus showing that
using specific domain knowledge can help pure data-driven tech-
niques.

2. BACKGROUND AND PROBLEM STATEMENT

Photo response non uniformity (PRNU) is a characterizing feature of
the sensor present in digital image acquisition devices that is mani-
fested as a noise term in acquired images [10]. It is due to device-
level anomalies in the semiconductors used to manufacture the imag-
ing sensor of digital cameras. Due to the physical origin of these
anomalies, PRNU is a unique feature of each individual camera. It
also makes it impractical for the image acquisition pipeline in cam-
eras to effectively compensate for PRNU so artifacts are present in
the digital images that are produced with the device. PRNU is also
robust to lossy compression, which makes it suitable as a robust fea-
ture for camera identification [10].

Being such a powerful forensic footprint, PRNU has been
greatly investigated in the literature under various scenarios. In the
following, we report the formal definition of typical PRNU-based
forensic problems in order to highlight the goal of this paper.

Device attribution. Given an image I and a generic denoising func-
tionD(·), we can compute the noise residual W = I−D(I). From
a series of noise residuals obtained from images shot with the same
device, it is possible to estimate the PRNU fingerprint K by apply-
ing a weighted average operation [10]. Given the PRNU fingerprint
K of a camera, we can bind an image I to that camera if:

NCC(W,K⊗ I) > τ, (1)

where NCC is the normalized cross-correlation function, ⊗ denotes

the Hadamard (element-wise) product and τ is a threshold set in or-
der to bound false-detection probability below a confidence value α.

Blind device anonymization. Given an image I, a blind anony-
mization function A(·) is a function that generates an anonymized
version of I, namely Î = A(I). The anonymization process ensures
that:

NCC(Ŵ,K⊗ Î) < τ, (2)

where Ŵ = I −D(̂I). We call it blind since it is not required any
prior knowledge on the reference PRNU KI for computing Î.

Anonymization detection. We define anonymization detection
problem as a two-class classification problem, where C0 is the class
of original images and C1 is the class of the anonymized images.
Given an image I under investigation, an anonymization detector is
an operator M(·) such that:

ŷ =M(I), (3)

where ŷ ∈ {0, 1} represents a label that assigns I to C0 or C1. The
goal of this paper is to design an operator M(·).

3. PRNU REMOVAL DETECTION

Given an image under analysis I, our goal is to detect whether its
PRNU traces have been removed or not. We propose the following
method to determine this: (i) we pre-process the image in order to
extract a feature that exposes salient anonymization information; (ii)
we add the proposed feature to a CNN that identifies whether the
analyzed image has been anonymized or not.

Feature extraction. Despite the well-known capabilities of CNNs to
work directly in the pixel domain, they can yield better performance
when coupled with domain specific knowledge of the problem to be
tackled. Using domain knowledge as indicated in [18, 19], we lever-
age the efforts of the forensics community and propose a preprocess-
ing approach to extract the residual noise left in the input image and
then shift it into the Fourier domain. Due to the noisy nature of the
PRNU pattern and the subtlety of the traces left by the anonymiza-
tion techniques, if pixel domain information were to be input into the
neural network, this would lead to poorly trained models incapable
of generalization or overfitted on image features instead of PRNU
removal detection. However, our proposed preprocessing leads to a
boost in the detection accuracy of our trained neural network model
while generalizing to unseen camera models, as shown in the Results
section.



Our feature extraction method is defined as follows. Let us con-
sider a grayscale H × W image I. By means of the Wavelet de-
noising function Dw(·) proposed in [20] and often used for PRNU
estimation, we compute the noise residual W from the image as:

W = I−Dw(I). (4)

We then compute the magnitude of the 2D Discrete Fourier Trans-
form (DFT2) as:

WF = |DFT2(W)|, (5)

and we then Wiener filter this signal, following the method described
in [8]:

[Φ]ij = [WF]ij ·
σ2
s

[SW]ij + σ2
s

, (6)

with
σ2
s = δ · σ2

W, (7)

where i = 1, . . . , H , j = 1, . . . ,W , σ2
W is the variance of WF and

SW is the matrix containing the variance of the energy of WF com-
puted over a 3×3 moving window. The parameter δ must be chosen
depending on the input signals in order to drive the Wiener filtering
operation (we set δ = 0.77 in our experiments). Without loss of gen-
erality, we iterate this procedure over each of the three channels of a
RGB image. The result is a H ×W × 3 feature Φ = Φ(I) we use
as network input. Fig. 1 visually displays all the feature extraction
steps.

Model. Due to the formulation of our problem, we can make use
of transfer learning, which is known to increase the performance of
detection models in limited data settings [21]. This means that we
can use CNN models pretrained on large image datasets and leverage
their learnt filters. After selecting a suitable architecture, we use
transfer learning on a model trained on ImageNet by replacing its last
fully-connected layer with a (nl, 1) fully-connected layer, where nl

is the number of input features of the original last layer. Additionally,
we perform a sigmoid over the network output to bind it to [0, 1].
Thus, giving as input a batch ofB samples X of sizeB×H×W×3
and its label tensor y of sizeB×1 ∈ {0, 1}, the network output ŷ of
size B × 1 ∈ [0, 1] is a tensor of scalars representing the likelihood
of each sample to be anonymized. We choose Binary Cross Entropy
as a loss function between the target and the output:

Lb = − [yb · log ŷb + (1− yb) · log (1− ŷb)] , (8)

where b ∈ {1, ..., B} is the sample in-batch index. We train each
model using Adam optimizer [22] until reaching a validation plateau.

In our experiment, we consider ResNet [23] as CNN model.
AlexNet [24] and VGG [25] were also considered, but underper-
formed ResNet, probably due to the consistently higher number of
parameters.

4. RESULTS

In this section we describe the dataset, the training strategy, and the
different kinds of analysis we performed to highlight different as-
pects of the proposed solution.

Dataset. Starting from the 600 original images from the Dresden
database [26] used in [16], we applied to each image the two ano-
nymization procedures described in [16] and [27], thus obtaining a
corpus of 600× 3 = 1800 images (i.e., the original images, and the
two sets of anonymzed ones). To the best of our knowledge, these
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Fig. 2: ROC curves for two different testing dataset.
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Fig. 3: ROC curves with various preprocessing approaches.

are the most recent methods for blind device anonymization known
in literature.

In order to validate the proposed approach on various kinds of
anonymized images, as well as to test cross-dataset generalization,
starting from the above images we define different sets of data.
Specifically, we define three training dataset:

•D1 composed by 300 original images and 300 images anony-
mized following [16],

•D2 composed by the same 300 original images and 300 images
anonymized following [27],

•D3 composed by the same 300 original images, the first 150
images anonymized by [16] and the last 150 images anonymized by
[27].

Following the same strategy, we construct two testing sets with
the remaining images:

•T1 composed by 300 original images and 300 images anony-
mized following [16],

•T2 composed by the same 300 original images and 300 images
anonymized following [27].

All the images are RGB images and have been central-cropped
to size 512×512 pixels. To increase the number of available sam-
ples, we split each image in 224×224 blocks with an overlapping
stride of 32×32. During training, we use 70% of each training set
for training, and the remaining 30% for validation. In total, we have
42000 samples in each training set, 18000 in each validation set and
60000 in each test set.

Cross dataset results. During the test phase we examined the
models trained on D1, D2, D3 and we test them against T1 and
T2. We perform our test in very challenging scenarios, including
training on a specific anonymization method and testing on the other
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one. The test procedure consists in freezing the network weights and
predicting ŷ given as input the feature Φ. By thresholding ŷ with
different thresholds, we compute true positive rate (TPR) and false
positive rate (FPR) w.r.t. the true label y and plot them as a Receiver
Operating Characteristic (ROC) curve. We show in Fig. 2 the ROC
curves for the most challenging training and testing conditions. The
Area Under Curve (AUC) on same-type dataset are very high and we
are able to reach comparable AUC even in the worst case scenario
in which we train on D1 and test on T2 and viceversa. This shows
that the proposed method generalizes over different anonymization
methods, and does not simply overfit to recognize one.

Fig. 3 shows the network performances with different input pre-
processing (image I or the noise residual W or the feature Φ). The
designed feature Φ is the one that shows the best results regardless
the arduous testing scenarios.

Leave One Out. One might be concerned the proposed CNN model
learns to recognize just the PRNU of the devices used during train-
ing. To verify the model performance with unseen camera devices,
we design a Leave One Out testing procedure. We modify our train-
ing dataset D3 by removing all the images acquired with device
Nikon_D200_0, creating D̃3. Similarly, we remove all the images
from all the devices except Nikon_D200_0 from T1 and T2 and
we add to them the images removed fromD3. These two new mono-
device datasets are known as T̃1 and T̃2. Fig. 4 shows the ROC for
training on D̃3 and testing on T̃1 and T̃2. We can assess that our
model is capable of discriminating between original and anonymi-
zed images even when it is tested against a device which was not
present in the training set.

Robustness to transformations. As it is clear from the litera-
ture [28], PRNU can be somehow corrupted by other editing oper-
ations. We are therefore interested in studying whether our method
recognizes these situations or not, and we design a proper testing
strategy.

Table 1: Transformation table with their parameters set. Parame-
ter for JPEG is the quality factor, for Gamma is the exponent, for
Brightness ranges from 0 (black image) to 1 (original image), for
Contrast ranges from 0 (solid gray image) to 1 (original image).

Transformation Parameters set

JPEG compression 70, 75, 80, 85, 90
Gamma correction 0.5, 0.6, 0.7, 0.8, 0.9

Brightness correction 0.5, 0.6, 0.7, 0.8, 0.9
Contrast correction 0.5, 0.6, 0.7, 0.8, 0.9

In the test phase, before extracting the feature matrix Φ from the
image I, we compute:

NCCpre = NCC(W, IK), (9)

where W is the noise residual obtained from I and K is the reference
PRNU. NCCpre gives us a baseline metric of correlation between an
image and its noise fingerprint. Then we modify the image with one
of the available transformations in Table 1, randomly selecting it and
a parameter from its set, and we compute:

NCCpost = NCC(Wt, ItK), (10)

where It and Wt denote the transformed image and the noise resid-
ual obtained from it, respectively. NCCpost gives us a measure of
the degradation of the fingerprint introduced by the transformation.
It is worth noting that all the transformations in Table 1 are non-
geometric transformations, hence we do not need to transform the
reference PRNU K too. After computing these two metrics, we
compute the network output ŷ from Φ. Fig. 5 shows the distribu-
tion of NCCpost values. For the sake of visualization, we show only
the samples with NCCpost > 0.05. We can clearly distinguish two
value distributions, the left one with [ŷ]i > 0.5 and the right one
with [ŷ]i ≤ 0.5. This shows that our method is robust to trans-
formations: when the NCC value is low the network classifies the
sample as anonymized, whereas when the NCC value is high, the
network classifies the sample as original. More in general this result
highlight the fact that we are not simply learning to discriminate the
artifacts left by the two considered anonymization methods.

5. CONCLUSIONS

In this paper, we considered the problem of detecting image anony-
mization by means of PRNU removal. We propose a new feature
starting from RGB images, and use this feature as input to a con-
volutional neural network. We select two different blind anonymiza-
tion techniques and perform network finetuning on images processed
with these techniques. Results show the effectiveness of our method
comparing to several different preprocessing pipelines. Our model is
capable of generalizing over unseen devices and it is robust against
non-geometric transformations.

Despite the undoubted capability of convolutional neural net-
works, pure data-driven approach was not sufficient for solving
the problem well enough. Forensics domain knowledge allowed
us to carefully design a preprocessing pipeline for feature extrac-
tion to ease network training, thus showing that model-based and
data-driven methods can benefit from one another.
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