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Abstract—In this paper we deal with the problem of hy-
perspectral X-Ray image denoising. In particular, we compare
a classical model-based Wiener filter solution with a data-
driven methodology based on a Convolutional Autoencoder. A
challenging aspect is related to the specific kind of 2D signal
we are processing: it presents mixed dimensions information
since on the vertical axis there is the pixels position while, on
the abscissa, there are the different wavelengths associated to
the acquired X-Ray spectrum. The goal is to approximate the
denoising function using a learning-from-data approach and to
verify its capability to emulate the Wiener filter using a much
less demanding approach in terms of signal and noise statistical
knowledge. We show that, after training, the CNN is able to
properly restore the 2D signal with results very close to the
Wiener filter, honouring the proper signal shape.

Index Terms—Hyperspectral Imaging, Image Denoising, Con-
volutional Autoencoder, Machine Vision.

I. INTRODUCTION

Wiener filter [1] is one of the milestones in signal and
image denoising and still nowadays is a crucial stage in
state-of-the-art image denoising [2] and image processing
[3] techniques. However, the introduction of Deep Learning
dramatically outperformed most of the previous approaches
making Convolutional Neural Networks (CNN) a paramount
step in many denoising algorithms [4]–[6]. In this article we
tackle the denoising of mixed 2D signals, where, as detailed
in section II, we have different physical characteristics on the
two axes (space and X-ray energies in our case). In particular
we compare the capabilities of the 2D Wiener filter to a CNN
approach with the significant advantage that, for the latter, we
do not need a detailed knowledge of noise and signal statistical
behaviour. We follow an approach based on a Convolutional
Autoencoder due to its proved effectiveness in many denoising
applications [5], [7]–[10] and the results provide a very good
agreement with the Wiener filter. The rest of the paper is
organized as follow: in Sec.II the hyperspectral denoising
problem is defined and the acquisition system is described.
In Sec.III the two proposed solutions are described, including
some preprocessing steps. In Sec.IV the experimental setup
used to collect hyperspectral data is described. Furthermore,
in Sec.V the denoising algorithms described in Sec.IV are
applied and the methods are compared. Finally in Sec.VI
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Fig. 1: Acquisition system.

the conclusions are drawn including some ideas for further
development.

II. BACKGROUND AND PROBLEM STATEMENT

In this section, we briefly describe the image acquisition
system and we formally define the image denoising problem.
We then provide some additional background remarks on the
used methodologies, which might be useful to understand the
rest of the paper.

Image acquisition system. With reference to Fig. 1, the
hyperspectral image acquisition system considered in this
work is composed by a X-ray generator, a conveyor trans-
porting the objects under analysis (e.g., food containers) and
a hyperspectral X-ray detector. The source of the X radiation
is an X-ray tube, i.e., a vacuum tube containing a cathode and
an anode. X-rays are generated by directing a stream of high
speed electrons from the cathode to the anode. The detector
is a linear sensor that measures the intensities (at different
spectral frequencies, commonly named X-Ray energies due
to the Planck-Einsten Relation [11]) of photons that have not
been absorbed by objects in front of it, i.e., the photons that
pass through the object reaching the sensor.

The acquired spectrum is divided into W photons frequen-
cies intervals, also called energy bins. Therefore, each pixel of
the acquired image is a vector of size (1×W ) containing the
intensities at all the energy bins. Since the detector is a push
broom sensor of H vertically aligned pixels, the acquired 2D
signal is a linear hyperspectral image I (called image in the
rest of the paper) with the size of (H×W ) samples, and each
value [I]ij , i = {1, . . . ,H}, j = {1, . . . ,W} represents the
intensity of received photons for a given spatial position and
a given energy bin.
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Fig. 2: (a) Single acquisition of background image. (b) Mean
of 10000 acquisitions of background image.

It is important to point out that, in normal operating con-
dition of the system, the scanned object is moving on the
conveyor belt. It is therefore paramount to develop timely and
efficient solutions for data denoising and processing in order
to work in real-time environments.

Problem formulation. Images acquired through digital ac-
quisition systems are subject to different kinds of degradation.
For the system under analysis, we can approximate noise as
additive zero-mean noise due to thermal, shot and 1/f noise
[12].

Formally we can define the acquired image I as:

I = I0 + N, (1)

where I0 is the true (i.e., unaffected by noise) image signal
and N is the additive noise term.

With this model at hand, our goal is to estimate a denoised
version of I, namely Î, as close as possible to I0, thus
compensating for the detrimental effect of N.

Under the assumption of additive zero-mean independent
noise realizations affecting the acquisition, we can consider the
sample mean Ī of an adequate number of repeated acquisitions
of an image I as a good and not distorted estimate of the clean
image I0. Therefore we consider Ī as the ground truth for our
algorithm’s output. (see Fig. 2). However, note that the sample
mean can only be applied in a controlled offline procedure,
as it would not be feasible in a real-time system due to the
necessity of multiple repeated acquisitions.

Wiener filter for image restoration. Wiener filtering is
commonly adopted in image restoration problems, since it
performs a statistical estimation of an unknown signal while
taking noise into account. In particular, Wiener filter approach
estimates Î such that the Mean Squared Error between I0 and
Î is minimized as it follows:

[Î]ij = F2
−1

(
[F2(I)]ij

[SI ]ij
[SI0 ]ij + [SN ]ij

)
, (2)

where F2(·) is the 2D Fourier transform, SN = |F2(N)|2
represents the power spectrum of the noise, and SI = |F2(I)|2
is the power spectrum of the clean image. This method is very
effective provided that SN and SI are estimated in a quite
accurate way and model’s assumptions hold [1].

Fig. 3: Typical Autoencoder structure. An input image is
mapped to its latent representation by the encoder. The decoder
turns the latent representation into an estimate of the input
data.

Convolutional Autoencoder. An Autoencoder is a specific
kind of neural network. The purpose of such a network
architecture is to learn a low-dimensionality representation of
an image (latent representation), and then reconstruct the input
from it [13]. The rationale behind this technique is to build a
representation of the input such that the reconstructed output
is derived from its most robust features. The Convolutional
Autoencoder (Fig. 3) is composed by an encoding part, in
which Convolution and Pooling layers are employed to reduce
the input dimensionality, and a decoding part, in which Decon-
volution (i.e. Transposed Convolution) and Upsampling layers
are employed to expand the latent representation dimensiona-
lity up to the input shape. We can define the Convolutional
Autoencoder as a function A (θ, ·) such that:

Î = A (θ, I) , (3)

where I is the input image, Î is the output image, matching
the shape of I and θ is the Autoencoder weights vector that
must be learned with a suitable training procedure.

III. ALGORITHM

In this section we describe the used algorithm, which
is composed of a preprocessing procedure followed by the
actual denoising step. In the following we report a detailed
description of each step.

A. Preprocessing

Images directly obtained from the sensor are not suitable
for denoising due to their dynamic range and the presence
of banding artifacts. For this reason, we first apply two
preprocessing operations before performing the denoising step.

Row Normalization. Fig. 4a shows the average background
image M obtained averaging 10 000 background images (no
objects were placed in front of the sensor). It is possible to
notice that the average acquired signal shows three horizontal
lines in which the values are significantly lower than the rest
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Fig. 4: Mean of background image. (a) Before row normal-
ization. (b) After row normalization.
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Fig. 5: Values distribution for an image pre and post histogram
normalization.

of the signal’s rows. This effect is due to the form factor of the
detector which is physically divided in four sub-sensors, each
one contributing to 32 rows. To contrast this, we perform row
normalization on each H×W input image I, starting from the
mean background signal M. The background signal is chosen
since all the other acquired images have lower values (in the
background image no objects intersect the X-rays path so the
intensity of the detected photons is maximum).

The normalized version Ĩ of the input image I is obtained
element-wise by:

[Ĩ]ij =
[I]ij [m]j

[M]ij
. (4)

where:

[m]j =
1

H

H∑
i=1

[M]ij , (5)

is the spatial average of M for frequency bin j. Fig. 4b reports
the normalized image Ĩ. It is possible to notice that the periodic
artifacts have been strongly attenuated.

Histogram Normalization. Another important preprocessing
step consist in stretching the image dynamic in the range
[0, 1] in order to obtain an adequate input for the CNN.
Since we are dealing with hyperspectral data, different images
have different value distributions with their own maxima. We
perform histogram normalization in order to obtain a more
uniform distribution of data over the range [0, 1] as shown in
Fig. 5. This is convenient for numerical stability in optimiza-
tion algorithms, since it is more difficult reaching convergence
with very skewed and imbalanced sample distributions.

TABLE I: Convolutional Autoencoder layers.

Type Filters Activation Output shape

Input - - (128× 128× 1)
Convolution 2D 32× (5× 5) ReLU (124× 124× 32)

Max Pooling (2× 2) - (62× 62× 32)
Convolution 2D 64× (3× 3) ReLU (60× 60× 64)

Max Pooling (2× 2) - (30× 30× 64)
Convolution 2D 128× (3× 3) ReLU (28× 28× 128)

Max Pooling (2× 2) - (14× 14× 128)
Convolution 2D 256× (3× 3) ReLU (12× 12× 256)

Max Pooling (2× 2) - (6× 6× 256)
Upsampling (2× 2) - (12× 12× 256)

Deconvolution 2D 128× (3× 3) ReLU (14× 14× 128)
Upsampling (2× 2) - (28× 28× 128)

Deconvolution 2D 64× (3× 3) ReLU (30× 30× 64)
Upsampling (2× 2) - (60× 60× 64)

Deconvolution 2D 32× (3× 3) ReLU (62× 62× 32)
Upsampling (2× 2) - (124× 124× 32)

Deconvolution 2D 1× (5× 5) SoftMax (128× 128× 1)

B. Denoising

After preprocessing, images are ready for the denoising step.
In this work, we compare two different denoising strategies: a
model-based solution based on Wiener filtering; a data-driven
method based on autoencoders.

Wiener Filter. According to (2), in order to apply Wiener
filter to an image, we need an estimate of the power spectrum
of the clean image SI and the power spectrum of the noise
SN . The power spectrum of the clean image SI is computed
as SI = |F2(Ī)|2 since the normalized mean image Ī is
considered representative of the clean image, where:[̄

I
]
ij

=
1

10000

∑10000

n=1
[Ĩn]ij , (6)

Following the same procedure, the power spectrum of the
noise SN is computed as SN = 1

10000

∑10000
n=1 |F2(In − Ī)|2.

Convolutional Autoencoder. The detailed architecture of the
adopted Convolutional Autoencoder is depicted in Table I.
Given as input a noisy image I, the Convolutional Autoencoder
A(θ, I) outputs directly the denoised version of the image
Î. The goal of the autoencoder is to first reduce the dimen-
sions of the image and then try to reconstruct it from this
low-dimension representation, hopefully neglecting the noise
affecting the original signal. The proposed architecture takes
as input an image of shape 128 × 128 × 1 and reduces it to
6×6×256, applying a downsampling factor of almost 2. The
use of SoftMax as last layer’s activation function ensures that
the output lies in the [0, 1] range.

IV. EXPERIMENTAL SETUP

In this section we report all details concerning the con-
sidered experimental setup. We first describe the considered
dataset. We then report implementation details about the
autoencoder training procedure.

Dataset. The dataset is composed by acquisitions taken with
MultiX ME1001, which is a linear sensor of length 128 pixel.

1https://www.qualityassurancemag.com/article/multix-me100-x-ray/
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(d) Convolutional Autoencoder

Fig. 6: Output images from the considered denoising methods.

0 20 40 60 80 100 120
freq

0.0

0.2

0.4

0.6
Input

Ground truth

Wiener filter

Convolutional Autoencoder

Fig. 7: Comparison of different methods on row 50 of a
specific image. The trend on other images is the same.

The operating point is 90keV and 0.2mA. For each acquisition,
we place an object in front of the sensor, we irradiate it
with an X-ray beam, and record the linear sensor output.
For each object we acquire 10 000 static images (i.e., the
item is steady in front of the sensor) changing the acquisition
time τ = {1ms, 1.5ms, 2ms} (i.e., the active recording time
of the sensor, similar to a camera shutter time). We divide
the frequency spectrum of the acquisition in 128 bins. The
final shape of each measure is therefore 128× 128, where the
first dimension is the number of pixels in a single column, so
acquired in the vertical direction, and the second is the number
of bins used to represent the spectrum. Different plastic
polymers of different thickness are considered as objects, as
listed in Table II. These polymers have a chemical composition
which represents the most common contaminants that can
be found during food inspections. For each material width
δ and for each acquisition time τ three measures have been
done, totaling 138 measures. The whole corpus of images
is therefore composed of 1 380 000 hyperspectral images of
shape 128× 128.

As both Wiener filtering and autoencoders rely on the offline
estimation of a set of parameters (i.e., power spectrums and
network weights), we apply a commonly adopted training-
validation-testing split policy to avoid bias the achieved results.
We pay attention to keep in the same set measurements of the
same material (including width δ) with the same acquisition
time τ . Hence, we randomly use 70% of the data for training
(of which 21.4% for validation) and 30% for testing.

Training and testing pipeline. We develop our autoencoder
model using Keras with TensorFlow as backend [14]. The

TABLE II: Considered materials for the acquisition

Material Label Width δ (mm)
Background BKG -
Polyethylene PE 2, 8, 16
Polyamide PA66 2, 8, 16

Polyoxymethylene POM 2, 8, 16
Polytetrafluoroethylene PTFE 2, 8, 16

Polyvinyl chloride PVC 2, 8, 16

network is trained to minimize the loss function L computed
on batches of B = 50 noisy images and their denoised version
Î:

L =
1

B

B∑
b=1

‖Ib − Îb‖2F =
1

B

B∑
b=1

‖Ib −A(θ, Ib)‖2F , (7)

where ‖ · ‖F denotes the Frobenius norm. By minimizing L
we force the denoised image Î to be as close as possible to I.
We use Stochastic Gradient Descent with Nesterov momentum
as optimizer, setting initial learning rate to 0.01, learning
rate decay to 10−6 each epoch and momentum to 0.9, until
reaching convergence on a validation plateau. At testing time,
we freeze the network weights and we compute the output
from each image in the testing dataset.

V. RESULTS

Table III shows the results for the two considered denoising
algorithms in term of Peak Signal-to-Noise Ratio (PSNR),
which is defined as:

PSNR = 20 · log10

(
HW

‖I− Î‖2F

)
, (8)

where I and Î are the compared images of size H × W
whose range is [0, 1], and the numerator term HW is needed
to compensate for the signals’ size. This particular metric
gives us the fidelity of the reconstruction of Î w.r.t. I. Even
though both algorithms yield good results (approximately 9
dB gain), it is worth noting that the implementation of Wiener
filter is heavily tailored to the considered acquisition system
data model. Nevertheless, PSNR between the two methods is
comparable, showing that it is possible to work in a CNN
fashion for hyperspectral Xray denoising. In particular, the
advantage of using the autoencoder is that we do not need to
have any kind of prior knowledge on the input data model,



TABLE III: PSNR for the considered methods. Best results in
bold.

Material
(δ, τ )

Noisy acquisition
PSNR (dB)

Wiener filter
PSNR (dB)

Autoencoder
PSNR (dB)

BKG 2ms 30.398 41.192 38.729
PA66 16mm 1.5ms 31.185 40.827 40.827
PA66 2mm 1.5ms 30.665 39.720 39.406

PE 2mm 1.5ms 30.561 39.259 38.852
PE 8mm 1.5ms 30.797 39.830 39.721

POM 16mm 2ms 31.148 41.329 40.880
POM 2mm 2ms 30.389 40.479 39.371

POM 8mm 1.5ms 30.991 40.362 40.163
PTFE 16mm 1ms 31.879 41.696 40.300
PTFE 2mm 1.5ms 30.752 39.900 39.626
PTFE 8mm 2ms 30.835 40.605 40.015
PVC 16mm 1ms 32.021 40.897 37.289
PVC 16mm 2ms 32.015 42.649 40.605
PVC 2mm 2ms 30.513 40.589 39.521

Fig. 8: Hidden layers representation

and we only need some training images. This leads to better
generalization capability with respect to Wiener filter method,
which requires a carefully characterization of the Noise-to-
Signal ratio SN/SI .

Moreover, the good denoising results achieved by the Con-
volutional Autoencoder could be further exploited in case
supervised problems (such as food contaminant detection and
segmentation) should be faced after denoising. As a matter
of fact, a transfer learning approach [15] could be adopted
in order to develop and train different CNNs that share
many layers with the one proposed in this paper, dramatically
reducing the number of parameters to be trained.

A visual example of the goodness of output images with
respect to the ground truth is shown in Fig. 6 and a per-pixel
plot is depicted in Fig. 7.

An interesting aspect to analyze is the output of the hidden
layers of the trained network. In fact, output from hidden
encoding layers displays the automatically extracted features
from the input image, giving us a clue on what the network
is highlighting during the encoding procedure. Fig 8 displays
some of the output from the innermost hidden layer, generated
by using as input a sample from the measure ”PVC 8mm
at 2ms”. We can clearly see different neurons activating at
different small frequency bands, each one capturing different
shapes and intensities that will be used in the decoder to
reconstruct the final output. This enables us to consider the
autoencoder as a methodology learning a set of meaningful
basis for data projection.

VI. CONCLUSIONS

In this paper we investigate denoising strategies for X-ray
hyperspectral images. The considered pipeline is composed of
a preprocessing step necessary for normalizing input images,
followed by candidate denoising solutions. Specifically, we
compare the effect of a Wiener filtering approach and a Con-
volutional Autoencoder. Results show that the solution based
on autoencoder provides close results to the one based on
Wiener filter. This is interesting as it is a strong indicator that
the proposed Autoencoder is capable of learning a meaningful
reduced dimensionality representation of the input data. This
opens the door to applications that can be built on top of
the denoising algorithm (e.g., food contaminant detection,
anomaly detection, material recognition, etc.). Indeed, it could
be possible to exploit the deep representation of the input data
provided by the autoencoder as candidate denoised feature
vector to be used for classification purpose.
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